Homogeneous Wavelets and Framelets with the Refinable Structure
نویسنده
چکیده
Homogeneous wavelets and framelets have been extensively investigated in the classical theory of wavelets and they are often constructed from refinable functions via the multiresolution analysis. On the other hand, nonhomogeneous wavelets and framelets enjoy many desirable theoretical properties and are often intrinsically linked to the refinable structure and multiresolution analysis. In this paper we shall provide a comprehensive study on connecting homogeneous wavelets and framelets to nonhomogeneous ones with the refinable structure. This allows us to understand better the structure of homogeneous wavelets and framelets as well as their connections to the refinable structure and multiresolution analysis.
منابع مشابه
Pseudo-splines, Wavelets and Framelets
The first type of pseudo-splines were introduced by [Daubechies, Han, Ron and Shen, 2003] (DHRS) to construct tight framelets with desired approximation orders via the unitary extension principle of [Ron and Shen, 1997]. In the spirit of the first type of pseudo-splines, we introduce here a new type (the second type) of pseudo-splines to construct symmetric or antisymmetric tight framelets with...
متن کاملPseudo-splines, Wavelets and Framelets
The first type of pseudo-splines were introduced in [12, 24] to construct tight framelets with desired approximation orders via the unitary extension principle of [22]. In the spirit of the first type of pseudo-splines, we introduce here a new type (the second type) of pseudo-splines to construct symmetric or antisymmetric tight framelets with desired approximation orders. Pseudo-splines provid...
متن کاملConstruction of biorthogonal wavelets from pseudo-splines
Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight fra...
متن کاملBand-limited Wavelets and Framelets in Low Dimensions
In this paper, we study the problem of constructing non-separable band-limited wavelet tight frames, Riesz wavelets and orthonormal wavelets in R and R. We first construct a class of non-separable band-limited refinable functions in low-dimensional Euclidean spaces by using univariate Meyer’s refinable functions along multiple directions defined by classic box-spline direction matrices. These n...
متن کاملConstruction of Wavelets and Framelets by the Projection Method
The projection method is a useful tool for analyzing various properties of multivariate refinable function vectors and for obtaining low-dimensional refinable function vectors and wavelets from high-dimensional ones. In this paper, we shall further study the projection method and its applications to multivariate wavelet and framelet systems. Examples will be given to illustrate the projection m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.01453 شماره
صفحات -
تاریخ انتشار 2017